Endocrine disruption in prosobranch molluscs: evidence and ecological relevance

Abstract
Prosobranch snails represent almost 50% of all recent molluscs, are ubiquitously distributed, play important roles in various ecosystems and exhibit a variety of reproductive modes and life-cycle-strategies. Many of them attain life spans of several years, which in combination with their limited ability to metabolize organic chemicals, may contribute to the fact that prosobranchs constitute one of the most endangered taxonomic groups in aquatic ecosystems. Although it is not yet known to what extent endocrine disrupting chemicals (EDCs) contribute to this situation, the case of tributyltin (TBT) and its population-level impact on prosobranchs demonstrates the general susceptibility of these invertebrates. The existing evidence for comparable population-level effects in prosobranch snails by other androgens, antiandrogens, and estrogens is critically reviewed. The example of TBT demonstrates the difficulty to prove an endocrine mode of action for a given chemical. Although it is generally accepted that TBT causes imposex and intersex in prosobranch snails as a result of endocrine disruption, the detailed biochemical mechanism is still a matter of debate. The strengths and weaknesses of the five competing hypotheses are discussed, together with previously unpublished data. Finally, the ecological relevance of EDC effects on the population and community level and the application of prosobranchs for the assessment of EDCs are addressed.