Seeing through the dark: New insights into the immune regulatory functions of vitamin A

Abstract
The importance of vitamin A for host defense is undeniable and the study of its mechanisms is paramount. Of the estimated 250 million preschool children who are vitamin A‐deficient (VAD), 10% will die from their increased susceptibility to infectious disease. Vitamin A supplementation was established in the 1980s as one of the most successful interventions in the developing world. Understanding how vitamin A controls immunity will help curb the mortality and morbidity associated with vitamin A deficiency and exploit the immune‐enhancing capacity of vitamin A to heighten host resistance to infectious disease. The discoveries that retinoic acid (RA) imprints the homing of leukocytes to the gut and enhances the induction of regulatory T cells, highlighted a potential role for RA in mucosal tolerance. However, more recently emerging data tell of a more profound systemic impact of RA on leukocyte function and commitment. In animal models using genetic manipulation of RA signaling, we learned when and how RA controls T cell fate. Here, we review the role for RA as a critical checkpoint regulator in the differentiation of CD4+ T cells within the immune system.