Abstract
The way in which surface tension acts as a singular perturbation to destroy the continuous family of needle-crystal solutions of the steady-state growth equations is analyzed in detail for two local models of solidification. All calculations are performed in the limit of small surface tension or, equivalently, small velocity. The basic mathematical ideas are introduced in connection with a quasilinear, isotropic version of the geometrical model of Brower et al., in which case the continuous family of solutions disappears completely. The formalism is then applied to a simplified boundary-layer model with an anisotropic kinetic attachment coefficient. In the latter case, the solvability condition for the existence of needle crystals can be satisfied whenever the coefficient of anisotropy is arbitrarily small but nonzero.