Computed tomography of calcaneal fractures: anatomy, pathology, dosimetry, and clinical relevance

Abstract
Eighteen CT examinations were performed in 10 patients for the evaluation of acute intraarticular fractures and their follow-up. Fractures comparable to those in the patients were created in cadavers. The normal anatomy and the traumatically altered anatomy of the calcaneus in the axial, coronal, and sagittal planes are demonstrated by CT and corresponding anatomic sections. Scanning was performed in the axial plane, with subsequent reconstruction in the coronal and sagittal planes. The axial scans show disruption of the inferior part of the posterior facet, calcaneocuboid joint involvement, and widening of the calcaneus. The coronal scans show disruption of the superior part of the posterior facet, sustentaculum tali depression (involvement of middle and anterior facets), peroneal and flexor hallucis longus tendon impingement, and widening and height loss of the calcaneus. The sagittal scans show disruption of the posterior facet, calcaneocuboid joint involvement, and height loss of the calcaneus and allow the evaluation of Boehler's and Gissane's angles. All three planes show the position of major fracture fragments. Radiation dose to the foot was measured to be 0.1 rad (0.001 Gy) for plain film radiography (five exposures), 18 rad (0.18 Gy) for conventional tomography (20 cuts), and 2.6 rad (0.026 Gy) for axial CT examination.

This publication has 1 reference indexed in Scilit: