Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain

Abstract
Recent evidence shows that brain-derived steroids such as estrogens (“neuroestrogens”) are controlled in a manner very similar to traditional neurotransmitters. The advent of in vivo microdialysis for steroids in songbirds has provided new information about the spatial and temporal dynamics of neuroestrogen changes in a region of the auditory cortex, the caudomedial nidopallium (NCM). Here, experiments using in vivo microdialysis demonstrate that neuroestradiol (E2) fluctuations occur within the auditory NCM during presentation of naturalistic auditory and visual stimuli in males but only to the presentation of auditory stimuli in females. These changes are acute (within 30 min) and appear to be specific to the NCM, because similar treatments elicit no changes in E2 in a nearby mesopallial region or in circulating plasma. Further experiments coupling in vivo steroid microdialysis with extracellular recordings in NCM show that neuroestrogens rapidly boost auditory responses to song stimuli in females, similar to recent observations in males. We also find that the rapid actions of estradiol on auditory responses are fully mimicked by the cell membrane-impermeable estrogen biotinylestradiol, consistent with acute estrogen actions at the neuronal membrane. Thus we conclude that local and acute E2 flux is regulated by convergent multimodal sensory input, and that this regulation appears to be sex-specific. Second, rapid changes in local E2 levels in NCM have consequences for the modulation of auditory processing in females and males. Finally, the rapid actions of neuroestrogens on NCM auditory processing appear to be mediated by a nonclassical, membrane-bound estrogen receptor.