Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites

Abstract
Percolation conductivity of a stick network depends on alignment as well as concentration. We show that both dependences exhibit critical (power-law) behavior, and study the alignment threshold in detail. The highest conductivity occurs for slightly aligned, rather than isotropic, sticks. Experiments on single wall carbon nanotube composites are supported by Monte Carlo simulations. These results should be broadly applicable to percolating networks of anisotropic conductors.