A Design Tool for Estimating Passenger Ride Discomfort Within Complex Ride Environments

Abstract
A series of experimental studies utilizing approximately 2200 test subjects has led to the development of a general empirical model for the prediction of passenger ride discomfort in the presence of complex noise and vibration inputs. The ranges of vibration and noise stimuli used to derive the model included the amplitudes and frequencies that are known to most influence passenger comfort. The ride quality model accounts for the effects of combined axis vibrations (up to three axes simultaneously) and includes corrections for the effect of vibration duration and interior noise. Output of the model consists of an estimate of the passenger discomfort produced by a given noise and/or vibration environment. The discomfort estimate is measured along a continuous scale that spans the range from below discomfort threshold to values of discomfort that are far above discomfort threshold.

This publication has 10 references indexed in Scilit: