Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components

Abstract
Dengue virus (DENV) is the most prevalent, medically important mosquito-borne virus. Disease ranges from uncomplicated dengue to life-threatening disease, characterized by endothelial dysfunction and vascular leakage. Previously, we demonstrated that DENV nonstructural protein 1 (NS1) induces endothelial hyperpermeability in a systemic mouse model and human pulmonary endothelial cells, where NS1 disrupts the endothelial glycocalyx-like layer. NS1 also triggers release of inflammatory cytokines from PBMCs via TLR4. Here, we examined the relative contributions of inflammatory mediators and endothelial cell-intrinsic pathways. In vivo, we demonstrated that DENV NS1 but not the closely-related West Nile virus NS1 triggers localized vascular leak in the dorsal dermis of wild-type C57BL/6 mice. In vitro, we showed that human dermal endothelial cells exposed to DENV NS1 do not produce inflammatory cytokines (TNF-α, IL-6, IL-8) and that blocking these cytokines does not affect DENV NS1-induced endothelial hyperpermeability. Further, we demonstrated that DENV NS1 induces vascular leak in TLR4- or TNF-α receptor-deficient mice at similar levels to wild-type animals. Finally, we blocked DENV NS1-induced vascular leak in vivo using inhibitors targeting molecules involved in glycocalyx disruption. Taken together, these data indicate that DENV NS1-induced endothelial cell-intrinsic vascular leak is independent of inflammatory cytokines but dependent on endothelial glycocalyx components. Dengue is the most prevalent mosquito-transmitted disease in humans and a significant public health issue worldwide. Severe dengue disease is characterized by vascular leak, which can lead to shock and potentially death. We previously demonstrated that nonstructural protein 1 (NS1), the only protein secreted from dengue virus (DENV)-infected cells, can both trigger vascular leak in mice when given systemically and increase permeability in human pulmonary endothelial cells via disruption of the endothelial glycocalyx-like layer, the molecular barrier that lines blood vessels. NS1 also triggers release of inflammatory cytokines from immune cells through activation of Toll-like receptor 4 (TLR4). Here, we explored the relative contributions of inflammatory molecules and the endothelial glycocalyx-like layer to NS1-mediated pathogenesis. Using cultured human dermal endothelial cells and mice genetically deficient for TLR4 or TNF-α receptor, we showed inflammatory signaling is not required for direct DENV NS1-mediated vascular leak. In contrast, inhibition of molecules involved in glycocalyx disruption blocked DENV NS1-induced vascular leak both in mice and in vitro. Altogether, our results indicate that disruption of endothelial glycocalyx components but not production of inflammatory cytokines is required for the direct action of DENV NS1 on endothelial cells and suggest potential molecular targets for treatment of severe dengue disease.
Funding Information
  • National Institute of Allergy and Infectious Diseases (RO1 AI24493)