Stray Light Correction of the Marine Optical System

Abstract
The Marine Optical System is a spectrograph-based sensor used on the Marine Optical Buoy for the vicarious calibration of ocean color satellite sensors. It is also deployed from ships in instruments used to develop bio-optical algorithms that relate the optical properties of the ocean to its biological content. In this work, an algorithm is applied to correct the response of the Marine Optical System for scattered, or improperly imaged, light in the system. The algorithm, based on the measured response of the system to a series of monochromatic excitation sources, reduces the effects of scattered light on the measured source by one to two orders of magnitude. Implications for the vicarious calibration of satellite ocean color sensors and the development of bio-optical algorithms are described. The algorithm is a one-dimensional point spread correction algorithm, generally applicable to nonimaging sensors, but can in principle be extended to higher dimensions for imaging systems.