Preferential Activation of Toll-Like Receptor Nine by CD46-Utilizing Adenoviruses

Abstract
Adenoviruses (Ads) are responsible for respiratory, ocular, and gastrointestinal illnesses in humans. While the majority of serotypes utilize coxsackievirus-adenovirus receptor (CAR) as their primary attachment receptor, subgroup B and subgroup D Ad37 serotypes use CD46. Given the propensity of Ad vectors to activate host immune responses, we sought to investigate their potential for type I interferon induction. We found that CD46 Ads were capable of alpha interferon (IFN-α) induction by peripheral blood mononuclear cells and that plasmacytoid dendritic cells (pDCs) were the principal producers of this cytokine. IFN-α induction correlated with the permissivity of pDCs to CD46- but not CAR-utilizing Ad serotypes. A role for Toll-like receptor 9 (TLR9) recognition of Ad was supported by the requirement for viral DNA and efficient endosomal acidification and by the ability of a TLR9-inhibitory oligonucleotide to attenuate IFN-α induction. Cell lines expressing TLR9 that are permissive to infection by both CAR- and CD46-utilizing serotypes showed a preferential induction of TLR9-mediated events by CD46-utilizing Ads. Specifically, the latter virus types induced higher levels of cytokine expression and NF-κB activation in HeLa cells than CAR-dependent Ad types, despite equivalent infection rates. Therefore, infectivity alone is not sufficient for TLR9 activation, but this activation instead is regulated by a specific receptor entry pathway. These data reveal a novel mode of host immune recognition of Ad with implications for Ad pathogenesis and for the use of unconventional Ad vectors for gene delivery and vaccine development.