Thermophotovoltaic emitter development

Abstract
Many refractory oxide ceramics in fibrous form are efficient converters of the heat of combustion into radiant energy. Rare earth oxide ceramics, which are refractory and stable in flames, exhibit selective emission in the near IR where semiconductor photoconverters are efficient in converting radiant energy directly into electrical power. Ytterbia emitters and silicon photoconverters, in particular, constitute the basis for a high performance thermophotovoltaic energy conversion system. Ceramic fiber fabrication techniques are described that yield mechanically durable emitters in classical mantle geometries and in a novel planar form. This work has been supported by the Basic Research Group of the Gas Research Institute, Chicago, Illinois.