Interferometric study of stable salinity gradients heated from below or cooled from above

Abstract
Mixing-layer development is investigated in laboratory experiments of salt-stratified solutions which are cooled from above or heated from below through the imposition of isothermal boundaries. A Mach-Zehnder interferometer is used to infer salt and density distributions within stable regions of the solution and to determine the extent of mixing-layer development. In both heating from below and cooling from above, this development differs significantly from that which has been observed for constant heating from below. Although the formation of a secondary mixed layer is observed, it does not lead to the development of additional mixed layers. Instead, the secondary layer eventually recedes, and the existence of a single mixed layer is restored. This behaviour is due to the isothermal boundary and the effect which it has no decreasing the heat transfer to or from the solution with increasing time. Once the condition of a single mixed layer is restored, extremely large (stable) density gradients develop in the boundary layer separating the mixed and stable regions, and subsequent growth of the mixed layer is slow. In cooling from above, mixing-layer development depends strongly on whether the isothermal boundary is in direct contact with the solution or separated by an air space.

This publication has 3 references indexed in Scilit: