DNA polymorphism at the omp-31 locus of Brucella spp.: evidence for a large deletion in Brucella abortus, and other species-specific markers

Abstract
Summary: The omp-31 gene, encoding a major outer-membrane protein in Brucella melitensis, was PCR-amplified from Brucella strains representing all species and known biovars by using primers selected according to the B. melitensis 16M omp-31 published sequence. Amplification of omp-31 was achieved from DNA of all Brucella species with the exception of Brucella abortus, the only Brucella species where expression of omp-31 was not detected by reactivity with an mAb specific for an epitope located in Omp-31. Southern blot hybridization of plasmid probes, bearing inserts (4.4-17 kb) containing B. melitensis 16M omp-31 and adjacent DNA of different sizes, with HindIII-digested total DNA showed that a large fragment, comprising the entire omp-31 gene and flanking DNA, was actually absent in B. abortus strains. The size of this DNA fragment has been determined to be about 10 kb. Southern blot hybridization with the different plasmid probes identified species-specific markers for B. abortus and B. melitensis. At the biovar level, a specific marker for B. melitensis bv. 1 was also identified. Additionally, PCR-RFLP studies of omp-31 revealed specific markers for Brucella ovis, Brucella canis and Brucella suis bv. 2. Using a combination of omp-31 PCR-RFLP patterns and Southern blot hybridization profiles Brucella species were differentiated with the sole exception of Brucella neotomae which was not differentiated from B. suis bv. 1, 3, 4 and 5. Results presented in this paper demonstrate the potential of omp-31 for differentiating the brucellae and show that B. abortus lacks a large DNA fragment of about 10 kb containing omp-31 and flanking DNA. In such a large deletion, other genes in addition to omp-31 are probably involved. Sequencing of this DNA fragment will help to identify the missing genes in B. abortus which could possibly be involved in the differences of pathogenicity and host preference seen in Brucella species.