Insulin Activation of the Phosphatidylinositol 3-Kinase/Protein Kinase B (Akt) Pathway Reduces Lipopolysaccharide-Induced Inflammation in Mice

Abstract
Insulin is used to control pro-inflammatory hyperglycemia in critically ill patients. However, recent studies suggest that insulin-induced hypoglycemia may negate its beneficial effects in these patients. It is noteworthy that recent evidence indicates that insulin has anti-inflammatory effects that are independent of controlling hyperglycemia. To date, the mechanism by which insulin directly reduces inflammation has not been elucidated. It is well established that insulin activates phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling in many cell types. We and others have shown that this pathway negatively regulates LPS-induced signaling and pro-inflammatory cytokine production in monocytic cells. We hypothesized that insulin inhibits inflammation during endotoxemia by activation of the PI3K/Akt pathway. We used a nonhyperglycemic mouse model of endotoxemia to determine the effect of continuous administration of a low dose of human insulin on inflammation and survival. It is noteworthy that insulin treatment induced phosphorylation of Akt in muscle and adipose tissues but did not exacerbate lipopolysaccharide (LPS)-induced hypoglycemia. Insulin decreased plasma levels of interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein 1 (MCP1)/JE, and keratinocyte chemoattractant, and decreased mortality. The PI3K inhibitor wortmannin abolished the insulin-mediated activation of Akt and the reduction of chemokine and interleukin-6 levels. We conclude that insulin reduces LPS-induced inflammation in mice in a PI3K/Akt-dependent manner without affecting blood glucose levels.