Selective photo-assisted catalytic oxidation of methane and ethane to oxygenates using supported vanadium oxide catalysts

Abstract
Selective photooxidation of light alkanes, mainly methane and ethane, into the corresponding aldehydes was achieved using silica-supported vanadium oxide catalysts under UV irradiation at elevated temperature. Photooxidation of methane using the V2O5/SiO2-IW (incipient wetness) (0.6 mol% V) catalyst at 493 K for 2 h gave 68 µmol of methanal, which corresponds to 76 mol% selectivity and 0.48 mol% one-pass yield. Photooxidation of ethane using V2O5/SiO2 (calcined at 1023 K) -IW (0.6 mol% V) catalyst for 1 h gave 85 µmol of ethanal, which corresponds to 90% selectivity and 1.1% one-pass yield. The catalysts prepared by the sol–gel method also showed activity, especially for the reaction of ethane. Both UV irradiation and a reaction temperature as high as 500 K were essential. The photo-assisted catalytic reactions were very sensitive to the reaction temperature, method of preparation of the catalyst, and addition of water vapour. While the reaction of methane was inhibited by the addition of water vapour, the photooxidation of ethane and propane was promoted in the presence of a controlled amount of water vapour. In addition, the reaction with methane required UV irradiation at a wavelength 2O5, were shown to be active for the photooxidation of ethane and propane.