Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression.

  • 1 August 1999
    • journal article
    • Vol. 59 (15), 3821-30
Abstract
Neuroendocrine (NE) cells occur as scattered foci within prostatic adenocarcinoma, similar to their distribution within ductal epithelial cells of the normal prostate. However, the density of NE cells is often greater in prostate carcinomas than in normal tissue, and the frequency of NE cells correlates with tumor grade, loss of androgen sensitivity, autocrine/paracrine activity, and poor prognosis. Although NE cells are nonmitotic, proliferating cells are found in direct proximity to them, suggesting that NE cells provide paracrine stimuli for surrounding carcinoma cells. In vitro, differentiation of the LNCaP and PC3M prostatic tumor cell lines to a NE phenotype can be induced by dibutyryl cyclic AMP (cAMP), suggesting that physiological agents that increase intracellular concentrations of cAMP might regulate NE differentiation in vivo. Indeed, we demonstrate in this report that LNCaP cells acquire NE characteristics in response to treatment with physiological and pharmacological agents that elevate intracellular cAMP, agents such as epinephrine, isoproterenol, forskolin, and dibutyryl cAMP. The androgen-independent LNCaP-derived cell line C4-2 also responded to these agents, indicating that cells representing later stages of tumor progression are also capable of differentiation. The NE phenotype in this study was monitored by the appearance of dense core granules in the cytoplasm, the extension of neuron-like processes, loss of mitogenic activity, and expression of the NE markers neuron-specific enolase, parathyroid hormone-related peptide, neurotensin, serotonin, and chromogranin A. However, contrary to previous reports, we observed rapid loss of the NE phenotype in both LNCaP and C4-2 cells upon withdrawal of inducing agents. Withdrawal also resulted in a rapid, dramatic increase in tyrosine kinase and mitogen-activated protein kinase activities, suggesting that activation of these intracellular signaling enzymes may be important for reentry into the cell cycle. Together, these results indicate that chronic cAMP-mediated signaling is required to block proliferation of prostate tumor cells and to induce NE differentiation.