Fluorescence detection in capillary zone electrophoresis using a charge-coupled device with time-delayed integration

Abstract
A fluorescence detection system for capillary zone electrophoresis is described in which a charged-coupled device (CCD) views a 2-cm section of an axially illuminated capillary column. The CCD is operated in two readout modes: a snapshot mode that acquires a series of images in wavelength and capillary position, and a time-delayed integration mode that allows long exposure times of the moving analyte zones. By use of the latter mode, the ability to differentiate a species based on both its fluorescence emission and migration rate is demonstrated for fluorescein and sulforhodamine 101. The detection limit for fluorescein isothiocyanate (FITC) is 1.2 X 10(-20) mol; detection limits for FITC-amino acids are in the (2-8) X 10(-20) mol range.