Antibodies in the small intestine: mucosal synthesis and deposition of anti-glycosyl IgA, IgM, and IgG in the enterocyte brush border

Abstract
Synthesis and deposition of immunoglobulins in the brush border was studied in organ-cultured pig small intestinal mucosal explants. Surprisingly, comparable amounts of IgM and IgA were synthesized during a 6-h pulse, and also newly made IgG was detected in media and explants, including the microvillar fraction. For IgA and IgM, this subcellular distribution is consistent with basolateral-to-apical transcytosis, mediated by the polymeric immunoglobulin receptor. IgG is a ligand for the Fc receptor FcRn, and β2-microglobulin, the light chain of FcRn, coclustered in immunogold double labeling with IgG in subapical endosomes and in the basolateral membrane of enterocytes. In addition, β2-microglobulin was copurified with IgG on protein G-Sepharose. Apical endocytosis of IgG, as judged by internalization of fluorescent protein G, was not detectable except in a few isolated cells. This suggests that IgG in the adult small intestine is transported across the enterocyte mainly in the basolateral to apical direction. Significant fractions of all immunoglobulins bound to lactoseagarose, indicating that “anti-glycosyl” antibodies, raised against commensal gut bacteria, are synthesized locally in the small intestine. By partial deposition in the brush border, these antibodies therefore may have a protective function by preventing lectin-like pathogens from gaining access to the brush border surface.