Abstract
The present review outlines studies of electrophsyiological organization, cortical architecture and thalmocortical and corticocortical connections in monotremes. Results of these studies indicate that the neocortex of monotremes has many features in common with other mammals. In particular, monotremes have at least two, and in some instances three, sensory fields for each modality, as well as regions of bimodal cortex. The internal organization of cortical fields and thalamocortical projection patterns are also similar to those described for other mammals. However, unlike most mammals investigated, the monotreme neocortex has cortical connections between primary sensory fields, such as SI and VI. The results of this analysis lead us to pose the question of what monotremes can tell us about brain evolution. Monotremes alone can tell us very little about the evolutionary process, or the construction of complex neural networks, as an individual species represents only a single example of what the process is capable of generating. Perhaps a better question is: what can comparative studies tell us about brain evolution? Monotreme brains, when compared with the brains of other animals, can provide some answers to questions about the evolution of the neocortex, the historical precedence of some features over others, and how basic circuits were modified in different lineages. This, in turn, allows us to appreciate how normal circuits function, and to pose very specific questions regarding the development of the neocortex.