Selection of Metal Oxide Charge Transport Layers for Colloidal Quantum Dot LEDs

Abstract
We investigate the effect of the electronic energy level positioning, conductivity, and morphology of metal oxide charge transport layers on the performance of light emitting devices (LEDs) that consist of a colloidally synthesized quantum dot (QD) luminescent film embedded between electron and hole injecting ceramic layers. We demonstrate that understanding of these material properties and their effect on charging processes in QDs enables the systematic design of higher efficiency QD-LEDs and excitation of QDs with different emission colors using the same device structure.