A Novel Catalyst for Synthesis of Styrene: Carbon Nanofibers Immobilized on Activated Carbon

Abstract
Carbon NanoFibers (CNFs) with hierarchically structure have been immobilized onto Activated Carbon (AC) by impregnation with an aqueous solution of Fe(CH3COO)2, reduction and subsequent chemical vapor decomposition of ethylene. The morphology of the CNFs can be modulated by adjusting the pH of the Fe(CH3COO)2 solution used for impregnating the AC. A stable yield of 35% in the oxidative dehydrogenation of ethylbenzene to styrene was obtained at a temperature of 673 K, around 200 K lower than the current industrial process. The immobilized CNFs on AC catalysts combine the catalytic properties of the carbon nanofibers and the suprastructure of the AC host. The final material is an easy to handle active catalyst, with an open structure of immobilized CNFs avoiding the pressure drop problem, which is typically observed for fine powder forms of CNFs. The immobilized CNFs on AC are attractive for gas-phase fixed-bed industrial applications.