Distinguishing Interannual Variations of the Northern and Southern Modes of the East Asian Winter Monsoon

Abstract
The East Asian winter monsoon (EAWM)-related climate anomalies have shown large year-to-year variations in both the intensity and the meridional extent. The present study distinguishes the interannual variations of the low-latitude and mid- to high-latitude components of the EAWM to gain a better understanding of the characteristics and factors for the EAWM variability. Through composite analysis based on two indices representing the northern and southern components (modes) of the EAWM variability, the present study clearly reveals features unique to the northern and southern mode. The northern mode is associated with changes in the mid- to high-latitude circulation systems, including the Siberian high, the Aleutian low, the East Asian trough, and the East Asian westerly jet stream, whereas the southern mode is closely related to circulation changes over the global tropics, the North Atlantic, and North America. A strong northern mode is accompanied by positive, negative, and positive surface temperature anomalies in the Indochina Peninsula, midlatitude Asia, and northeast Russia, respectively. A strong southern mode features lower temperature over tropics and higher temperature over mid- to high-latitude Asia. While the southern mode is closely related to El Niño–Southern Oscillation (ENSO), the northern mode does not show an obvious relation to the tropical sea surface temperature (SST) change or to the North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) on the interannual time scale. Distinct snow cover and sea ice changes appear as responses to wind and surface temperature changes associated with the two modes and their effects on the EAWM variability need to be investigated in the future.