SUMO-Specific Protease 2 Is Essential for Modulating p53-Mdm2 in Development of Trophoblast Stem Cell Niches and Lineages

Abstract
SUMO-specific protease 2 (SENP2) modifies proteins by removing SUMO from its substrates. Although SUMO-specific proteases are known to reverse sumoylation in many defined systems, their importance in mammalian development and pathogenesis remains largely elusive. Here we report that SENP2 is highly expressed in trophoblast cells that are required for placentation. Targeted disruption of SENP2 in mice reveals its essential role in development of all three trophoblast layers. The mutation causes a deficiency in cell cycle progression. SENP2 has a specific role in the G–S transition, which is required for mitotic and endoreduplication cell cycles in trophoblast proliferation and differentiation, respectively. SENP2 ablation disturbs the p53–Mdm2 pathway, affecting the expansion of trophoblast progenitors and their maturation. Reintroducing SENP2 into the mutants can reduce the sumoylation of Mdm2, diminish the p53 level and promote trophoblast development. Furthermore, downregulation of p53 alleviates the SENP2-null phenotypes and stimulation of p53 causes abnormalities in trophoblast proliferation and differentiation, resembling those of the SENP2 mutants. Our data reveal a key genetic pathway, SENP2–Mdm2–p53, underlying trophoblast lineage development, suggesting its pivotal role in cell cycle progression of mitosis and endoreduplication. Genome replication is essential for both expansion of stem cell numbers through mitosis and their maturation into certain specialized cell types through endoreduplication, a unique mechanism for multiplying chromosomes without dividing the cell. An important function of p53 as a guardian of the genome ensures that the genetic information is properly propagated during these processes. In this study, we discovered that mice with disruption of SENP2, an enzyme that removes small molecular signals (called SUMO) that modify a protein's behavior and stability, are unable to form a healthy placenta as a result of deficiencies in the formation of various trophoblast cell types that give rise to the placenta. In the mutants, SUMO modification of Mdm2, a protein that monitors the cellular levels of p53, is deregulated. The loss of SENP2 causes dislocation of Mdm2, leading to aberrant stimulation of p53. The precursor cells known as trophoblast stem cells rely on p53 to proliferate and differentiate into specialized polyploid cells, which contain multiple copies of chromosomes. In SENP2 mutants, all three trophoblast layers were substantially defective, with the layer containing mainly the polyploid cells most severely affected and diminished. This study reveals a key genetic pathway, SENP2–Mdm2–p53, which is pivotal for the genome replication underlying trophoblast cell proliferation and differentiation.