Particle Dispersion and Mixing of Conservative Properties in an Eddy-Resolving Model

Abstract
We examine the diffusive behavior of the flow field in an eddy-resolving, primitive equation circulation model. Analysis of fluid particle trajectories illustrates the transport mechanisms, which are leading to uniform tracer and potential vorticity distributions in the interior of the subtropical thermocline. In contrast to the assumption of weak mixing in recent analytical theories, the numerical model indicates the alternative of tracer and potential vorticity homogenization on isopycnal surfaces taking place in a nonideal fluid with strong, along-isopycnal eddy mixing. The eastern, ventilated portion of the gyre appears to be sufficiently homogeneous to allow the concept of an eddy diffusivity to apply. A break in a random walk behavior of particle statistics occurs after about 100 days when along-flow dispersion sharply increases, indicative of mean shear effects. During the first months of particle spreading, eddy dispersal and mean advection are of similar magnitude. Eddy kinetic energy is of O(60–80 cm2 s−2) in the model thermocline, comparable to the pool of weak eddy intensity found in the eastern parts of the subtropical oceans. Eddy diffusivity in the model thermocline (Kxx = 8 × 107, Kyy = 3 × 107 cm2 s−1) seems to be higher by a factor of about 3 than oceanic values estimated for these area. Below the thermocline, model diffusivity decreases substantially and becomes much more anisotropic, with particle dispersal preferentially in the zonal direction. The strong nonisotropic behavior, prominent also in all other areas of water eddy intensity, appears as the major discrepancy when compared with the observed behavior of SOFAR floats and surface drifters in the ocean.