Stabilization Mechanisms of Nontraditional Additives

Abstract
Because of the high cost of quality construction materials, transportation engineers are often forced to seek alternative designs using substandard materials, commercial construction aids, alternative pavement materials, and innovative design practices. Nontraditional soil stabilization additives are being marketed as viable solutions for stabilizing marginal materials as a low-cost alternative to traditional construction materials. Nontraditional additives are diverse in their composition and the way they interact with soil. Unfortunately, little is known about their interaction with geotechnical materials and their fundamental stabilization mechanisms. The objective of this research was to advance current understanding of the chemical and physical bonding mechanisms associated with selected non-traditional stabilizers. The research consisted of conducting qualitative analyses of hypothesized stabilization mechanisms, examining historical literature for supporting documentation, and performing laboratory experiments to improve the understanding of how these nontraditional additives stabilize soils. Laboratory experiments included image analyses, physical characterization, and chemical analyses to determine the primary constituents of the mineral, soil, stabilizer, and stabilized soil composite. The focus of this effort was to provide insight into the proposed mechanisms by using the laboratory data to examine proposed mechanisms from the historical literature and to provide additional hypotheses for the interaction between nontraditional additives and different soil types.

This publication has 1 reference indexed in Scilit: