Ion recombination correction for very high dose-per-pulse high-energy electron beams

Abstract
The parallel-plate ionization chamber is the recommended tool for the absorbed dose measurement in pulsed high-energy electron beams. Typically, the electron beams used in radiotherapy have a dose-per-pulse value less then 0.1 cGy/pulse. In this range the factor to correct the response of an ionization chamber for the lack of complete charge collection due to ion recombination (ksat) can be properly evaluated with the standard "two voltage" method proposed by the international dosimetric reports. Very high dose-per-pulse electron beams are employed in some special Linac dedicated to the Intra-Operatory-Radiation-Therapy (IORT). The high dose-per-pulse values (3-13 cGy/pulse) characterizing the IORT electron beams allow to deliver the therapeutic dose (10-20 Gy) in less than a minute. This considerably reduces the IORT procedure time, but some dosimetric problems arise because the standard method to evaluate ksat overestimates its value by 20%. Moreover, if the dose-per-pulse value >1 cGy/pulse, the dependence of ksat on the dose-per-pulse value cannot be neglected for relative dosimetry. In this work the dependence of ksat on the dose-per-pulse value is derived, based on the general equation that describes the ion recombination in the Boag theory. A new equation for ksat, depending on known or measurable quantities, is presented. The new ksat equation is experimentally tested by comparing the absorbed doses to water measured with parallel-plate ionization chambers (Roos and Markus) to that measured using dose-per-pulse independent dosimeters, such as radiochromic films and chemical Fricke dosimeters. These measurements are performed in the high dose-per-pulse (3-13 cGy/pulse) electron beams of the IORT dedicated Linac Hitesys Novac7 (Aprilia-Latina, Italy). The dose measurements made using the parallel-plate chambers and those made using the dose-per-pulse independent dosimeters are in good agreement ( 1 cGy/pulse) electron-beam dosimetry.

This publication has 4 references indexed in Scilit: