Subsurface microstructure of metal‐on‐metal hip joints and its relationship to wear particle generation

Abstract
To control and minimize wear of metal-on-metal hip joints it is essential to understand the mechanisms of debris generation. In vivo, mainly nanosize globular and needle-shaped particles are found. These can neither stem from the action of abrasion nor from tribochemical reactions. In this study the acting wear mechanisms have been first identified on the surface by means of scanning electron microscopy (SEM). Afterwards, the microstructures of the subsurface regions of explants have been investigated using a transmission electron microscope (TEM). Observation of the subsurface gave additional insight about the microstructural changes of cobalt-base alloys subjected to wear. At some distance from the surface, a network of stacking faults and hexagonal ϵ-martensite was found strengthening the bulk material. This microstructure changed into a nanocrystalline type moving closer towards the surface. A comparison of in vivo debris size and grain size of the surface suggests that the globular wear particles result from torn off nanocrystals, while the needle shaped particles are generated by fractured ϵ-martensite. Identified cracks, propagating through the nanocrystalline layer, further support these findings. Thus, it is suggested that the dominating mechanism of particle generation for metal-on-metal joints is surface fatigue within a nanocrystalline surface layer. © 2004 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 72B: 206–214, 2005
Funding Information
  • Deutsche Forschungsgemeinschaft (POL 436 17/2/03 (to W.F.))