Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy

Abstract
Surface-enhanced Raman spectroscopy (SERS) benefits from the enhanced electromagnetic field of the localized surface plasmon resonance effect of metallic (especially coinage metals) nanoparticles or nanostructures. The detection sensitivity and reproducibility of SERS measurement appear to be the two critical issues in SERS. To solve the problem associated with traditional nanoparticle aggregates and SERS substrates, we propose in this work single particle SERS. We prepared uniform gold microspheres with controllable size and surface roughness using an etching-assisted seed-mediated method. Single particle dark-field spectroscopy and SERS measurements show that particles with a larger roughness give a stronger SERS signal, but still retain a good reproducibility. This study points to the promising future of the practical application of the single particle SERS technique for trace analysis.