Magnetic-Field-Induced Surface Transport on Laser-Irradiated Foils

Abstract
Electrons heated by absorption of laser energy are shown to generate intense magnetic fields which rapidly spread from the edge of the laser spot along the target surface. The fields convectively transport hot electrons and confine a major fraction of the deposited laser energy in the corona. Eventually, this energy is lost to fast-ion blowoff or deposited at large distances from the spot. This model qualitatively explains many experimental observations of thermal-transport inhibition and fast-ion loss.