The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans

Abstract
A method is described of measuring the tensile stiffness and fracture stress of human femoral condylar cartilage in planes parallel to and at increasing depth below the articular surface. The axis of tension was either parallel or perpendicular to the predominant collagen fibre direction in the superficial zone. Specimens were analysed for their collagen and glycosaminoglycan contents and partial correlation coefficients were determined between the tensile properties and each of the chemical constituents. The correlations between the tensile properties and the collagen content of specimens oriented parallel to the collagen fibre direction was statistically significant in the superficial zone but the significance level decreased with increasing depth. In specimens which were oriented perpendicularly to the collagen fibre direction the correlations between the above variables were less significant. There was no significant correlation between the tensile properties and the glycosaminoglycans in cartilage. Visibly normal specimens from the superficial layer which were situated adjacent to visibly degenerate cartilage were weaker and less stiff than specimens situated on normal joints or remote from visibly degenerate cartilage. Such differences decreased with depth below articular surface and were greater in parallel-oriented specimens.