Atmospheric Chemistry of C3−C6 Cycloalkanecarbaldehydes

Abstract
The rate coefficients for the gas phase reaction of NO3 and OH radicals with a series of cycloalkanecarbaldehydes have been measured in purified air at 298 +/- 2 K and 760 +/- 10 Torr by the relative rate method using a static reactor equipped with long-path Fourier transform infrared (FT-IR) detection. The values obtained for the OH radical reactions (in units of 10(-11) cm3 molecule(-1) s(-1)) were the following: cyclopropanecarbaldehyde, 2.13 +/- 0.05; cyclobutanecarbaldehyde, 2.66 +/- 0.06; cyclopentanecarbaldehyde, 3.27 +/- 0.07; cyclohexanecarbaldehyde, 3.75 +/- 0.05. The values obtained for the NO3 radical reactions (in units of 10(-14) cm3 molecule(-1) s(-1)) were the following: cyclopropanecarbaldehyde, 0.61 +/- 0.04; cyclobutanecarbaldehyde, 1.99 +/- 0.06; cyclopentanecarbaldehyde, 2.55 +/- 0.10; cyclohexanecarbaldehyde, 3.19 +/- 0.12. Furthermore, the reaction products with OH radicals have been investigated using long-path FT-IR spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS). The measured carbon balances were in the range 89-97%, and the identified products cover a wide spectrum of compounds including nitroperoxycarbonyl cycloalkanes, cycloketones, cycloalkyl nitrates, multifunctional compounds containing carbonyl, hydroxy, and nitrooxy functional groups, HCOOH, HCHO, CO, and CO2.