An Irreversible Thermodynamics Theory for Damage Mechanics of Solids

Abstract
The entropy production is a non-negative quantity based on irreversible thermodynamics and thus serves as a basis for the systematic description of the irreversible processes occurring in a solid. In this paper, a thermodynamic framework has been presented for damage mechanics of solid materials, where entropy production is used as the sole measure of damage evolution in the system. As a result, there is no need for physically meaningless empirical parameters to define a phenomenological damage potential surface or a Weibull function to trace damage evolution in solid continuum. In order to validate the model, predictions are compared with experimental results, which indicates that entropy production can be used as a damage evolution metric. The theory is founded on the basic premise that a solid continuum obeys the first and the second laws of thermodynamics.

This publication has 20 references indexed in Scilit: