Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

Top Cited Papers
Open Access
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops. Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with very wide host ranges. They cause vast economic damage during crop cultivation as well as in harvested produce. These fungi are typical examples of necrotrophs: they first kill host plant cells and then colonize the dead tissue. The genome sequences of the two fungi were determined in order to examine commonalities in structure and content and in order to find unique features that may distinguish them from other pathogenic fungi and from saprotrophic fungi. The genomes show high sequence identity and a similar arrangement of genes. S. sclerotiorum and B. cinerea differ in their regulation of sexual reproduction, and the genetic basis and its evolution could be explained from the genome sequence. The genome sequence revealed a striking difference in the number and diversity of secondary metabolism gene clusters, which may be involved in the adaptation to different ecological niches. Altogether, there were no unique features in the genomes of S. sclerotiorum and B. cinerea that could be identified as “silver bullets,” which distinguish these aggressive pathogens from other pathogenic and non-pathogenic fungi. These findings reinforce the quantitative, multigenic nature of necrotrophic pathogenesis.