Contribution of proprioception for calibrating and updating the motor space

Abstract
The absence of muscular proprioception, whether at a segmental or at a central level, impairs performance in several ways. The contribution of proprioception to movement control and learning is not easily dissociated from that of other sources of sensory information (e.g., vision). Therefore, the rare clinical cases of extensive neuropathy, depriving the brain massively and permanently of its presumed main sources of dynamogenic information from skin and muscles, are of very special interest. Two such patients and controls were tested in experiments investigating (i) force production, (ii) amplitude coding, (iii) spatial reference frames in pointing, and (iv) prismatic adaptation. Overall, our results highlight the key role of proprioceptive afferents for calibrating the spatial motor frame of reference, and the powerful substitutive properties of the central nervous system.Key words: proprioception, deafferentation, space calibration, motor control.