Abstract
Chemical data on gonadotropins from several vertebrate species are summarized and discussed from an evolutionary point of view. A high degree of homology has been observed between mammalian gonadotropins (LH and FSH) and thyrotropin (TSH). In non-mammalian species the existence of LH and FSH-like hormones has been demonstrated except for squamate and fish species. Especially in fish the number of GTHs is still controversial. One pituitary glycoprotein assumes various gonadotropic functions of the pituitary, and a second pituitary hormone (carbohydrate-poor) acts on fish ovarian growth. GTHs from bird, reptile, amphibian, and fish pituitaries have been purified and chemically characterized (amino acid composition, carbohydrate content). The existence of a quaternary structure has been demonstrated for several tetrapod LHs and fish GTHs. The amino acid composition of α and β subunits purified from turkey (Meleagris gallopavo), and turtle (Chelydra serpentira, Chelonia mydas) LHs and from common carp (Cyprinus carpio) and sturgeon (Acipenser stellatus) GTHs showed homology with the mammalian α and β subunits. The partial sequences of carp GTH subunits have shown that the carp GTH β was more closely related to mammalian LH β than to FSH β. Hybrid molecules could be obtained by association of heterologous subunits. The kinetics of subunit association has been studied in vitro. As compared to ovine LH, subunit association of carp GTH was more rapid and thermodependent. The subunit β seemed to determine the thermodependence. The various GTH subunits in living vertebrate probably derive from a common ancestral molecule.Key words: vertebrate gonadotropins, chemical characterizations, GTHs subunits, amino acid sequences, hybrid molecules, evolution.