Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters

Abstract
We present an ultra-compact comb filter using an add-drop ring resonator with an Archimedean spiral cavity. The cavity consists of two interleaved spiral branches which are connected in the center using arcs of circle of a radius that causes minimum bend loss. We describe the design procedure and examine the physical parameters governing the resonator performance. As an example, we demonstrate experimentally a comb filter with a 25 GHz channel spacing made of silicon photonic wires and only occupies an area of 80 × 90 µm2, approximately a 70 fold size reduction compared to a racetrack resonator. The filter transmission is free of spurious reflections, attesting to the smooth transition between different sections of the resonator cavity. Over a 40 channel wavelength span, the filter exhibits a quality factor Q > 35,000, extinction ratios > 10 dB, and an excellent power uniformity with variations < 0.5 dB for both the through and drop ports.