Abstract
In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite-horizon discrete-time nonlinear systems with finite approximation errors. The idea is to use an iterative ADP algorithm to obtain the iterative control law that makes the iterative performance index function reach the optimum. When the iterative control law and the iterative performance index function in each iteration cannot be accurately obtained, the convergence conditions of the iterative ADP algorithm are obtained. When convergence conditions are satisfied, it is shown that the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some mild assumptions. Neural networks are used to approximate the performance index function and compute the optimal control policy, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

This publication has 30 references indexed in Scilit: