Abstract
The paper deals primarily with the use of stable isotopic ratios to determine the former climate of ice sheets. Studies of temperature profiles throughout ice sheets have shown that for at least several thousand years, changes of isotopic δ ratios have been proportional to changes of surface temperatures; this relationship is discussed in terms of the physical processes involved. It is considered reasonable to use a similar relation for earlier periods in Antarctica, but in Greenland the relation may have varied with time. When determining past climates from the isotopic record, allowances have to be made for changes in the flow and thickness of ice sheets during major glacial periods. These factors are considered in relation to major ice cores from Vostok and Byrd stations in Antarctica and from Camp Century in Greenland. Vostok is the simplest case glaciologically, Camp Century the most complex. On purely glaciological grounds it appears that the ice age gave way to present-day climates some 10 000 ± 1000 a B.P., the coldest period being 20 000 + 3000 a B.P., when the climate in Antarctica was 6-8 °C colder than at present. Glaciological data suggest a duration of 50 000 to 100 000 years for the last ice age. Before this period, climates in Greenland and Antarctica appear to have been around 2-3 °C warmer than at present.