Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates

Abstract
Fosfomycin represents a potential last-resort treatment option for infections with certain multidrug-resistant (MDR) Gram-negative pathogens. We evaluated double-drug combinations of fosfomycin with imipenem, meropenem, doripenem, colistin, netilmicin, and tigecycline for in vitro synergy against 100 MDR Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates, using the Etest method. Synergy was defined as a fractional inhibitory concentration index ≤0.5. The isolates were consecutively collected at a university hospital in Greece from various clinical specimens. Against 50 serine carbapenemase-producing K. pneumoniae isolates, synergy of fosfomycin with imipenem, meropenem, doripenem, colistin, netilmicin, and tigecycline was observed for 74.0%, 70.0%, 74.0%, 36.0%, 42.0%, and 30.0% of the isolates, respectively. Against 14 extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae isolates, synergy of fosfomycin with imipenem, meropenem, doripenem, colistin, netilmicin, and tigecycline was observed for 78.6%, 42.9%, 42.9%, 7.1%, 42.9%, and 21.4%, respectively; for 20 ESBL-producing E. coli isolates, the corresponding values were 55.0%, 25.0%, 30.0%, 15.0%, 25.0%, and 25.0%; and for 15 MDR P. aeruginosa isolates, the corresponding values were 46.7%, 53.3%, 73.3%, 13.3% , 13.3%, and 13.3%. Antagonism was not observed for any of the combinations tested. Further studies are needed in order to confirm the clinical relevance of the above findings.