Measurement of Local Retinal Ganglion Cell Layer Thickness in Patients With Glaucoma Using Frequency-Domain Optical Coherence Tomography

Abstract
To explore the feasibility of obtaining a local measurement of the thickness of the retinal ganglion cell layer in patients with glaucoma using frequency-domain optical coherence tomography (fdOCT) and a computer-aided manual segmentation procedure. The fdOCT scans were obtained from the horizontal midline for 1 eye of 26 patients with glaucoma and 20 control subjects. The thickness of various layers was measured with a manual segmentation procedure aided by a computer program. The patients were divided into low- and high-sensitivity groups based on their foveal sensitivity on standard automated perimetry. The RGC plus inner plexiform and the retinal nerve fiber layers of the low-sensitivity group were significantly thinner than those of the high-sensitivity group. While these layers were thinner in the patients than the controls, the thicknesses of inner nuclear layer and receptor layer were similar in all 3 groups. Further, the thinning of the retinal ganglion cell plus inner plexiform layer in 1 glaucoma-affected eye showed qualitative correspondence to the loss in 10-2 visual field sensitivity. Local measures of RGC layer thickness can be obtained from fdOCT scans using a manual segmentation procedure, and these measures show qualitative agreement with visual field sensitivity.