On geometric entropy

Abstract
We show that a geometrical notion of entropy, definable in flat space, governs the first quantum correction to the Bekenstein-Hawking black hole entropy. We describe two methods for calculating this entropy - a straightforward Hamiltonian approach, and a less direct but more powerful Euclidean (heat kernel) method. The entropy diverges in quantum field theory in the absence of an ultraviolet cutoff. Various related finite quantities can be extracted with further work. We briefly discuss the corresponding question in string theory.