Abstract
By focusing on entire bubbles rather than films or vertices, a simple model is proposed for the deformation and flow of foam in which dimensionality, polydispersity, and liquid content can easily be varied. Simulation results are presented for the linear elastic properties as a function of bubble volume fraction, showing a melting transition where the static shear modulus vanishes and the relaxation time scale peaks. Results are also presented for shear stress versus strain rate, showing intermittent flow via avalanchelike topological rearrangements and Bingham-plastic behavior.

This publication has 15 references indexed in Scilit: