Tropical Cyclone Destructive Potential by Integrated Kinetic Energy

Abstract
Tropical cyclone damage potential, as currently defined by the Saffir-Simpson scale and the maximum sustained surface wind speed in the storm, fails to consider the area impact of winds likely to force surge and waves or cause particular levels of damage. Integrated kinetic energy represents a framework that captures the physical process of ocean surface stress forcing waves and surge while also taking into account structural wind loading and the spatial coverage of the wind. Integrated kinetic energy was computed from gridded, objectively analyzed surface wind fields of 23 hurricanes representing large and small storms. A wind destructive potential rating was constructed by weighting wind speed threshold contributions to the integrated kinetic energy, based on observed damage in Hurricanes Andrew, Hugo, and Opal. A combined storm surge and wave destructive potential rating was assigned according to the integrated kinetic energy contributed by winds greater than tropical storm force. The ratings are based on the familiar 1–5 range, with continuous fits to allow for storms as weak as 0.1 or as strong as 5.99.