Measuring Water Storage Fluctuations in Lake Dongting, China, by Topex/Poseidon Satellite Altimetry

Abstract
Although satellite radar altimetry was developed and optimized for open oceans, it has been used to monitor variations in the level of inland water-bodies such as lakes and rivers. Here, for the first time, we have further used the altimetry-derived variation of water level for estimating the fluctuation of water storage as an addition to the present in situ water storage estimation systems to be used in remote areas and in emergency situation such as in the events flooding monitoring and for studying the effect of climate change. Lake Dongting, the second largest lake in China, influenced frequently by flooding, was, therefore, chosen to demonstrate the potential of the technique. By using the concept of an “assumed reference point”, we converted Topex/Poseidon satellite altimetry data on water level variations in Lake Dongting to “water level” data. The “water level” time-series data and in situ water storage were used to establish a rating curve. From the rating curve, we converted data on “water level” derived from seven years (1993–1999) of Topex/Poseidon data to actual water storage in Lake Dongting. The result reveals that the seasonal and annual fluctuations of water storage occurred during the 1990s with a more frequent flooding at the late 1990s' especially the flooding in whole catchment level in 1998 and 1999. The study supports the usefulness of satellite altimetry for dense and continuous monitoring of the temporal variations in water dynamic in moderate to large lakes.