Abstract
Recent preclinical and clinical studies have demonstrated that cotreatments with extremely low doses of opioid receptor antagonists can markedly enhance the efficacy and specificity of morphine and related opioid analgesics. Our correlative studies of the cotreatment of nociceptive types of dorsal-root ganglion neurons in vitro and mice in vivo with morphine plus specific opioid receptor antagonists have shown that antagonism of Gs-coupled excitatory opioid receptor functions by cotreatment with ultra-low doses of clinically available opioid antagonists, e.g. naloxone and naltrexone, markedly enhances morphine's antinociceptive potency and simultaneously attenuates opioid tolerance and dependence. These preclinical studies in vitro and in vivo provide cellular mechanisms that can readily account for the unexpected enhancement of morphine's analgesic potency in recent clinical studies of post-surgical pain patients cotreated with morphine plus low doses of naloxone or nalmefene. The striking consistency of these multidisciplinary studies on nociceptive neurons in culture, behavioral assays on mice and clinical trials on post-surgical pain patients indicates that clinical treatment of pain can, indeed, be significantly improved by administering morphine or other conventional opioid analgesics together with appropriately low doses of an excitatory opioid receptor antagonist.