Increasing indoor spectrum sharing capacity using smart reflect-array

Abstract
The radio frequency (RF) spectrum becomes overly crowded in some indoor environments due to the high density of users and bandwidth demands. To accommodate the tremendous wireless data demands, efficient spectrum-sharing approaches are highly desired. To this end, this paper introduces a new spectrum sharing solution for indoor environments based on the usage of a reconfigurable reflect-array in the middle of the wireless channel. By optimally controlling the phase shift of each element on the reflect-array, the useful signals for each transmission pair can be enhanced while the interferences can be canceled. As a result, multiple wireless users in the same room can access the same spectrum band at the same time without interfering each other. Hence, the network capacity can be dramatically increased. To prove the feasibility of the proposed solution, an experimental testbed is first developed and evaluated. Then, the effects of the reflect-array on transport capacity of the indoor wireless networks are investigated. Through experiments, theoretical deduction, and simulations, this paper demonstrates that significantly higher spectrum-spatial efficiency can be achieved by using the smart reflect-array without any modification of the hardware and software in the users' devices.

This publication has 13 references indexed in Scilit: