A homogeneity correction method for magnetic resonance imaging with time-varying gradients

Abstract
When time-varying gradients are used for imaging, the off-resonance behavior does not just cause geometric distortion as is the case with spin-warp imaging, but changes the shape of the impulse response and causes blurring. This effect is well known for projection reconstruction and spiral k-space scanning sequences. The authors introduce a reconstruction and homogeneity correction method to correct for the zeroth order effects of inhomogeneity using prior knowledge of the inhomogeneity. In this method, the data are segmented according to collection time, reconstructed using some fast, linear algorithm, correlated for inhomogeneity, and then superimposed to yield a homogeneity corrected image. This segmented method is compared to a conjugate phase reconstruction in terms of degree of correction and execution time. The authors apply this method to in vivo images using projection-reconstruction and spiral-scan sequences.< >