Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele

Abstract
The IDDM2 type 1 diabetes susceptibility locus was mapped to1–6 and identified as7 allelic variation at the insulin gene (INS) VNTR regulatory polymorphism. In Caucasians, INS VNTR alleles divide into two discrete size classes1. Class I alleles (26 to 63 repeats) predispose in a recessive way to type 1 diabetes, while class III alleles (140 to more than 200 repeats) are dominantly protective8. The protective effect may be explained by higher levels of class III VNTR-associated INS mRNA in thymus such that elevated levels of preproinsulin protein enhance immune tolerance to preproinsulin, a key autoantigen in type 1 diabetes pathogenesis9,10. The mode of action of IDDM2 is complicated, however, by parent-of-origin effects2,7,11–14 and possible allelic heterogeneity within the two defined allele classes7,15. We have now analysed transmission of specific VNTR alleles in 1,316 families and demonstrate that a particular class I allele does not predispose to disease when paternally inherited, suggestive of polymorphic imprinting16. But this paternal effect is observed only when the father's untransmitted allele is a class III. This allelic interaction is reminiscent of epigenetic phenomena observed in plants (for example, paramutation; ref. 17) and in yeast (for example, frans-inactivation; ref. 18). If untransmitted chromosomes can have functional effects on the biological properties of transmitted chromosomes, the implications for human genetics and disease are potentially considerable.