Studies of ultra-intense laser plasma interactions for fast ignition

Abstract
Laser plasma interactions in a relativistic parameter regime have been intensively investigated for studying the possibility of fast ignition in inertial confinement fusion (ICF). Using ultra-intense laser systems and particle-in-cell (PIC) simulation codes, relativistic laser light self-focusing, super hot electrons, ions, and neutron production, are studied. The experiments are performed with ultra-intense laser with 50 J energy, 0.5–1 ps pulse at 1053 nm laser wavelength at a laser intensity of 1019W/cm2. Most of the laser shots are studied under preformed plasma conditions with a 100 μm plasma scale length condition. In the study of laser pulse behavior in the preformed plasmas, a special mode has been observed which penetrated the preformed plasma all the way very close to the original planar target surface. On these shots, super hot electrons have been observed with its energy peak exceeding 1 MeV. The energy transport of the hot electrons has been studied with making use of emissions from a seeded metal layer in planar targets. The details of ion acceleration followed by beam fusion reaction have been studied with neutron spectrometers. Laser ponderomotive force self-focusing and hot electron generation have been applied to a compressed core to see the effect of heating by injecting 12 beams of 100 ps, 1 TW pulses.