The utility of multi-sensor data for mapping eroded lands

Abstract
The availability of remote sensing data with improved spatial, spectral and radiometric resolution is now available to fully exploit their potential for a specific application subject to the relative merits and the limitations of each sensor's data. Presented here is a case study where Landsat MSS and TM; and SPOT MLA data for part of the Bijapur district, southern India, which were acquired on the same day, have been evaluated for mapping eroded lands. The approach involves the geometric registration of all three data to a common map grid using tie points and third order polynomial transform; and resampling the MSS and TM data to a 20m by 20 m pixel dimension and radiometric normalization. Thematic maps showing eroded lands were generated on a micro-VAXbased DIPIX system using a maximum likelihood classifier. Accuracy estimates were made for the thematic maps following stratified unaligned random sampling technique, and subsequently, computing overall accuracy and Kappa coefficient. Spectral separability and classification accuracy was maximum from SPOT-MLA data followed by a combination of Landsat MSS band 1, SPOT-MLA band 2 and Landsat TM band 4; Landsat TM, a combination of Landsat MSS, TM and SPOT MLA; and Landsat MSS data.